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1. | Introduction.

¢

by Weide (1978) concerning the complete convergence of certain random

The main objective of the present note is to solve a problem proposed

variables associated with Karp's probabilistic analysis of the traveling
salesman problem (Karp (1976), (1977)).

To set the problem precisely let Xi, 1l <i <o be independent
random varisbles uniformly distributed on the unit square [0,1)°, and
let Tn denote the length of the shortest path (in the usual Euclidean
distance) which connects each element of [xl,xg,...,xn}.

It was proved by Beardwood, Halton, and Hammersley (1959) that

1im 'rn/./H =f

n -
with probability one for a finite constant B. This fact was central to
the motivation behind Karp's algorithm, but as Weide (1978) points out
the Karp algorithm actually calls for the followlng stronger result to
be proved here:
Theorem 1. There is a constant £ such that for all ¢ >0, one has

on

P(lTn/./H-ﬂl >e) <,
n=1

This type of convergence is usually called complete convergence, and

Theorem 1 stands in a similar relation to the Beardwood, Halton, Hammersley
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Theorem as the Hsu~Robbins Theorem stands in relation to the strong law
of large numbers (Lukacs (1968), Hsu and Robbins (1947)). The "easy-half"
of the Borel-Cantelli lemma shows that Theorem 1 implies the Beardwood-
Halton-Hammersley Theorem and the "hard-half” of the Borel-Cantelli lemma
shows how Theorem 1 is necessary in modeling contexts vwhere problems of
increased size are generated independently of previous problems. (For a
full discussion of independent versus incrementing models for random
problems one should consult Weide (1978)).

The proof of Theorem 1 is given in the next section and depends upon
shapening a subadditivity argument which has been useful in more general
contexts (Steele (1979)). The third section discusses a generalization

of Theorem 1.

2. Proof of Theorem 1.

Let N = N(t) denote a Poisson counting process with constant growth
rate 1. Also, for any Ac[o,l]2 let Tt(A) denote the length of the
shortest path through the points AN {xl,xe,...,xN(t)]. The method of
proof rest upon developing recursions for the functions

2 2 2, 172 2
p(t) = E Tt([oyll ), w(t) =(E Tt([o:ll )) , and V(t) = ¥(t)-97(t).

First one notes the following:

Lemma 1. There is a constant c¢ such that for any set 2 c [0,1] with

n elements there is a path of length no greater than cyn through .
This lemma is easeily proved, but for a proof which yields a good

value of ¢ one can consult Few (1955).
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Now let

2
1 1..2 1 1 1 1
5 = Tt([O:E] )+ Tt(['é:l] )+ Tt([§’1] X [0:2] )+ Tt([é—’l] X [O)E] )
and note by elementary geometry that Tt([0,1]2) < S+4., By well-known
properties of the planar Poisson process one has that the four summands
of S are independent and identically distributed. By scaling one

also notes E Tt([O,%]e) = %—cp(t/h) and (E ﬁ([o,é}e))l/z = %*(t/h).

Thus, taking expectations of (S+l+)2 one has
2 2 2
(2.1) ¥(E) < ¥ (6/4) +3 97 (t/b) +16 p(t/4) + 16 . ;

To simplify (2.1) let ¥ (6) = ¥(t%), 9, (t) = 9(t%), and V) (8) = V(¢°)
and note that (2.1) implies

(et) <¥5t) + 3 of(t) +26 0 () + 126
which entails
vy (2t) < V) (8) + b of (t) - of(2t) +160, (6) + 16
and dividing by (2t)2,

(2.2)  vy(@t)/(26)F - (/M) (6)/4%2 93 (6)/47 - of (28)/ (28)° +h(oy (£)42)/4°

Applying (2.2) successively to t,2t,22t,...,2u'lt and summing yields
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M M-1
L v @)/ @ -3 T v, @)/ (25)°
k=1 K=0

< of (©)/4% - o M)/ (%)% s u (o (t)+l)(:§ 2Bk )2
and consequently
@3) L v@e/@)” < 3m e @ s n)ed) <o
In terms of V(t), (2.3) becomes for u = t°

(2.4) T ve)/ %) < w .
k=0

Now by Beardwood-Halton-Hammersley and dominated convergence theorems we have

qa(hku)/ (hku)l/ 2 %8 as k *x» Hence by (2.4) and Chebychev's inequality,

(2.5) E ez, (10,0705 28] > ¢) <.
k=0 4™

k
Now for all n > 4P there is a Pl >m > 4P such that hkm <n<b (ml)
for some k > O. Hence by Boole's inequality and the monotonicity of
T,[0,1]

«w

(2.6) T PUT_((0,11°)/a*28} > )
n-0

o 402
<3 Lorr, e
k=l P A (mel)

yP*1

+ L I P, <@
k=1 ot? 47 m

k+1 (m+ )1/2)
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yPt 1/2

<¥ I =, mﬁmﬂﬁ”zxmaumﬁf/>
k=1 Mp 4" (m¥l )

p+1 1

w 1/2
+Y I P(T /(h / < (B-€)(a+7P) / ) .
k=l poP

-1/2
By choosing p, one can guarantee that (1+:°P) (B+e) >B and
(1+r'p)(b-€) < B 80 (2.5) insures that the last two sums in (2.6)

converge, 8o

(2.7) L p(lz,(0,0°)/n 28] 3 ) <
n=0

To obtain Theorem 1 from (2.7) we note that

(2.8)  B(lT ((0,112)/n2. 8] 5 ¢) = 5_:0 Pl /a2 > ) B

= min P(Tm/nl/2 2 Pte) - n:f-m
+ : p(T/l/2<p €) + mm,-m
m=0

> P('I'n/nl/2 > ﬂ+e)(%) + P('I‘n/nl/2 < B-¢) (%) .

In the last inequality above one uses the fact that P(Tn >\) is
monotone increasing, and the fact that  } ne /m! and
m>n

)X n'e ?/mi each exceed [.1-. The bounds (2.7) and (2.8) complete
m<n

the proof of Theorem 1.
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3. Further Results.

In the previous section the aim was to give the most direct proof
possible of the result conjectured by Weide (1978). The complete conver-
gence proved there can easily be extended to the broader context of
subadditive Euclidean functionals. Since the method of proving complete
convergence in this context is directly parallel to the preceeding
argument, it is sufficient to state the more general result.

To introduce Euclidean functionals, let L denote a real value
function defined on the finite subsets B, 4 >2. It will be assumed
that L(xl,x2,...,xn) is measurable whenever X;, 1 <i<n, are
measurable, and that the following four assumptions are satisfied:

Al. L(Otxl,axa,...,axn) =(1L(xl,x2,...,xn) for @ >0.

A2, L(xl+t,x2+t,...,xn+'b) = L(xl,xa,...,xn) for t € |Rd .

A3, L(xl,xz,. .. ’xn’xn+l) > L(xl,xa,.. . ,xn) .

Al Var(L(xl,xz,...,xn)) <o when X, are independent and
uniform on the unit cube [0,1]19 .

There is one further assumption which is needed and it is .the only
one vwhich is not trivial to verify in most applications.
Suppose that (Q: 1 <1 <ml) is the partition of ([0,1]% into

sub-cubes of edge 1/m and let tQ = {x: x=ty, y € Qi]. The subadditivity

assumption is the following:

A5. There i3 g constant C > 0 such that for all positive integers

m and positive reals t one has
d
a, =& a-1
L({xl,xz,...,xn] n [0,t]7) < 1.gll.([xl,xa,...,xn} n tQ.l)+ctm .

6
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It is proved in Steele (1979) that if I satisfies the preceding

five assumptions and [Xi] are independent with a uniform distribution

in [0,1]d then

d-1)/4
lim L(Xl,x2,...,xn)/n( ya B
n -* oo
with probability one for some constant 0 < B < w .,
One can easily check that the preceeding result implies the
Beardwood, Halton, Hammersley theorem. The main observation to be

made here is that this result also can be sharpened as in Section 2

to obtain the following:

Theorem 2. Suppose L is a functional which satisfies assumptions
M-A5. If [X:1<i< ») are independent and uniformly distributed

in (O,l]d, then there is a constant 0 <P < » so that for all

€e>0

f: P(lL(xl,xg,...,xn)/n(d-l)/d-ﬂ >€) <o
n-1

There are many functionals which arise in the theory of algorithms
and which satisfy A1-A5. The easiest examples are those associated
with the Steiner tree problem and the rectilinear Steiner tree problem,
but in essentially any geometric problem which deals with minimized

lengths one can find natural functionals which meet the conditions of

Theorem 2.
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As a final polnt one should note that both Beardwood, Halton, and

Hammersley (1959) as well as Steele (1979) contain results valid for

random variables with non-uniform distribution. The approximation

processes used in these papers to extend the uniform case can again be

applied here although to do so would require considerable space. Since

the algorithmic applications and the program begun by B. W. Weide (1978)
are ably served by Theorems 1 and 2, these last extentions have been

omitted.
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